Problem 1.34

Test Stokes' theorem for the function $\mathbf{v}=(x y) \hat{\mathbf{x}}+(2 y z) \hat{\mathbf{y}}+(3 z x) \hat{\mathbf{z}}$, using the triangular shaded area of Fig. 1.34.

Fig. 1.34

Solution

The aim here is to verify Stokes's theorem, which states that

$$
\iint_{S}(\nabla \times \mathbf{v}) \cdot d \mathbf{S}=\oint_{\text {bdy } S} \mathbf{v} \cdot d \mathbf{l},
$$

for the given triangular area S. Start by evaluating the surface integral on the left, noting that the area element points in the positive x-direction by the right-hand corkscrew rule.

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{v}) \cdot d \mathbf{S} & =\int_{0}^{2} \int_{0}^{2-y}(\nabla \times \mathbf{v}) \cdot(\hat{\mathbf{x}} d z d y) \\
& =\int_{0}^{2} \int_{0}^{2-y}\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & 2 y z & 3 z x
\end{array}\right| \cdot(\hat{\mathbf{x}} d z d y) \\
& =\int_{0}^{2} \int_{0}^{2-y}\left|\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & 2 y z & 3 z x
\end{array}\right| d z d y \\
& =\int_{0}^{2} \int_{0}^{2-y}\left[\frac{\partial}{\partial y}(3 z x)-\frac{\partial}{\partial z}(2 y z)\right] d z d y \\
& =\int_{0}^{2} \int_{0}^{2-y}[(0)-(2 y)] d z d y \\
& =\int_{0}^{2}(-2 y)(2-y) d y \\
& =-\frac{8}{3}
\end{aligned}
$$

Let L_{1} be the line segment along the z-axis, let L_{2} be the line segment along the y-axis, and let L_{3} be the line segment along the hypotenuse.

The integration paths are parameterized as follows.

$$
\begin{array}{ll}
\mathbf{l}_{1}(t)=\langle 0,0,2-t\rangle, & 0 \leq t \leq 2 \\
\mathbf{l}_{2}(t)=\langle 0, t, 0\rangle, & 0 \leq t \leq 2 \\
\mathbf{l}_{3}(t)=\langle 0,2-t, t\rangle, & 0 \leq t \leq 2
\end{array}
$$

Therefore, since $\mathbf{v}=\langle x y, 2 y z, 3 z x\rangle$, the closed loop integral over the triangular area's boundary is

$$
\begin{aligned}
\oint_{\text {bdy } S} \mathbf{v} \cdot d \mathbf{l}= & \int_{L_{1}} \mathbf{v} \cdot d \mathbf{l}+\int_{L_{2}} \mathbf{v} \cdot d \mathbf{l}+\int_{L_{3}} \mathbf{v} \cdot d \mathbf{l} \\
= & \int_{0}^{2} \mathbf{v}\left(\mathbf{l}_{1}(t)\right) \cdot \mathbf{l}_{1}^{\prime}(t) d t+\int_{0}^{2} \mathbf{v}\left(\mathbf{l}_{2}(t)\right) \cdot \mathbf{l}_{2}^{\prime}(t) d t+\int_{0}^{2} \mathbf{v}\left(\mathbf{l}_{3}(t)\right) \cdot \mathbf{l}_{3}^{\prime}(t) d t \\
= & \int_{0}^{2}\langle(0)(0), 2(0)(2-t), 3(2-t)(0)\rangle \cdot\langle 0,0,-1\rangle d t \\
& \quad+\int_{0}^{2}\langle(0)(t), 2(t)(0), 3(0)(0)\rangle \cdot\langle 0,1,0\rangle d t \\
& \quad+\int_{0}^{2}\langle(0)(2-t), 2(2-t)(t), 3(t)(0)\rangle \cdot\langle 0,-1,1\rangle d t \\
= & \int_{0}^{2}(0) d t+\int_{0}^{2}(0) d t+\int_{0}^{2}(-2 t)(2-t) d t \\
= & 0+0+\left(-\frac{8}{3}\right) \\
= & -\frac{8}{3} .
\end{aligned}
$$

Because the left and right sides are the same, Stokes's theorem is verified.

